Clustering a.j.m.m. (ton) weijters

The main idea is to define k centroids, one for each cluster
(Example from a K-clustering tutorial of Teknomo, K. http://people.revoledu.com/kardi/tutorial/index.html)

Example

- A trainer of a running group has 220 runners. For practical reasons, he likes to split up the group in 8 homogenous sub groups that can perform more or less the same training program.
- Think about relevant properties:
- Running distance during Cooper test
- Weight

K-means clustering

- K-means (MacQueen, 1967) is one of the simplest unsupervised learning algorithms that solve the well known clustering problem. The procedure follows a simple and easy way to classify a given data set through a certain number of clusters (assume k clusters) fixed a priori.

Steps of the algorithm

- Determine K centroids (randomly?)
- Iterate until stable (= no object move group)
- Determine the distance of each object to the centroids
- Group the object based on minimum distance
- When all objects have been assigned, recalculate the positions of the K centroids

Example

- The numerical example below is given to understand this simple iteration

Object
attribute 1
(X):

Medicine A 1

Medicine B 2

Medicine C 4

Medicine D 54

iteration 0

$\mathrm{K}=2$
Centronic $1=(1,1)$
Centronic $2=(2,1)$

For example, distance from medicine $C=(4,3)$ to the first centroid is

$$
\sqrt{(4-1)^{2}+(3-1)^{2}=3.61}
$$

and its distance to the second centroid is,
etc. $\quad \sqrt{(4-2)^{2}+(3-1)^{2}=2.83}$
Medicine C belongs to centroid C2

The two groups are $C 1=\{A\}, C 2=\{B, C, D\}$
Calculate new C1 and C2. New C1 = old C1

$$
C 2=\left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right)=\left(\frac{11}{3}, \frac{8}{3}\right)
$$

$C 1=\{A, B\}, C 2=\{C, D\}$
iteration 2

Important Issues

- Normalization (age, weight, distance Coopertest)
- Nominal attributes (male, female)
- Weighting

