Clustering a.j.m.m. (ton) weijters

The main idea is to define k centroids, one for each cluster

(Example from a K-clustering tutorial of Teknomo, K.

http://people.revoledu.com/kardi/tutorial/index.html)

Example

- A trainer of a running group has 220 runners. For practical reasons, he likes to split up the group in 8 homogenous sub groups that can perform more or less the same training program.
- Think about relevant properties:
 - Running distance during Cooper test
 - Weight

K-means clustering

 K-means (MacQueen, 1967) is one of the simplest unsupervised learning algorithms that solve the well known clustering problem. The procedure follows a simple and easy way to classify a given data set through a certain number of clusters (assume k clusters) fixed a priori.

Steps of the algorithm

- Determine K centroids (randomly?)
- Iterate until *stable* (= no object move group)
 - Determine the distance of each object to the centroids
 - Group the object based on minimum distance
 - When all objects have been assigned, recalculate the positions of the K centroids

Example

 The r exam is give 	The numerical example below s given to understand this simple iteration	Object	attribute 1 (X):	attribute 2 (Y):
under simpl		Medicine A	1	1
0		Medicine B	2	1
		Medicine C	4	3

Medicine D 5 4

K=2 Centronic 1 = (1,1)Centronic 2 = (2,1)

For example, distance from medicine C = (4, 3) to the first centroid is $\sqrt{(4-1)^2 + (3-1)^2} = 3.61$

and its distance to the second centroid is,

etc.

 $\sqrt{(4-2)^2+(3-1)^2}=2.83$

Medicine C belongs to centroid C2

The two groups are $C1 = \{A\}, C2 = \{B, C, D\}$ Calculate new C1 and C2. New C1 = old C1

$$C2 = \left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right) = \left(\frac{11}{3}, \frac{8}{3}\right)$$

 $C1=\{A,B\}, C2=\{C,D\}$

Important Issues

- Normalization (age, weight, distance Coopertest)
- Nominal attributes (male, female)
- Weighting