

Genetic Algorithms

Genetic Algorithms provide an approach to learning based loosely on simulated evolution

a.j.m.m. (ton) weijters

Genetic Algorithm (GA)

- The search for an appropriate hypothesis begins with a population of initial *hypotheses strings*.
- Members of the current population gives rise to the next generation by means of operations such as *crossover* and *mutation*.
- At each step, the hypotheses in the current population are evaluated by a *fitness function*.
- The most fit hypotheses are selected probabilistically for producing the next generation.

Example Applications

- Planning
- Scheduling
- Optimization

General Characterization

- Searching for an optimal solution is difficult
 - large search space
 - simple more traditional algorithm not available
- Measurement of the quality of a given solution is relative simple
- Local optimization versus local optimization

Example GA; rule induction

- Motivation: Decision trees have sometimes problems with finding combinations of informative features.
- How to present rules (sets)
- Quality measurement
 - We don't search in one big step for THE rule set, but search step by step for good rules! Remove the cases covered by a rule out of the learning material and start searching for a next rule!

technische universiteit eindhoven

Illustratione technische universitie (10 learning examples):

110100	ning examplee/.	,		
Hair	Length	Weight	Suntan cream	Burned
blond	medium	light	yes	no
blond	medium	light	no	yes
red	long	light	yes	yes
brown	medium	heavy	yes	no
blond	long	medium	yes	no
brown	long	light	no	no
red	small	heavy	no	yes
brown	long	light	yes	no
blond	medium	heavy	no	yes
brown	small	heavy	no	no
New (te	est) examples:			
red	medium	light	yes	yes
blond	medium	medium	no	yes
brown	small I	light	yes	nee

Representing hypotheses

- Assume we are looking to rules for the burningexample:
- hair: red, blond, brown length: short, medium, long weight: light, medium, heavy suntan cream: yes, no burning: yes, no
- IF hair=blond AND suntan_cream=yes THEN burning=no
- **010** 111 111 10 01

Genetic operators

single-point crossover: 1110100101110 0001010111101 000110010111101

two-point crossover:

point mutation:

00011001<u>0</u>1110

/faculteit technologie management

00011001<u>1</u>1110

Fitness Function

TU/e

- We are interested in population elements (rules) that are accurate and are supported by many examples.
- Example fitness function for a classification rule: Nc/N+1 with
 - *Nc* the number of correct classified cases
 - -N is the number of cases covered by the rule

Examples (Nc/N+1)

TU/e

- 4/5 rule (covers 5 examples out of which it classifies 4 correctly) = 4/5+1 = 0.667
- 40/50 rule (covers 50 examples out of which it classifies 40 correctly) = 40/50+1 = 0.784

This is what we want because the 4/5 rule is based on less data then the 40/50 rule.

The fitness function defines the criterion for probabilistically selecting a hypothesis for inclusion in the next generation. For example:

$$P(h_i) = Fitness(h_i) / \sum_{j=1}^{p} Fitness(h_j) |$$

technische universiteit eindhoven

Prototypical genetic algorithm

- Generate P with 500 random hypotheses
- Calculate the fitness of all 500 members
- Repeat while max-fitness<threshold:
 - Select probabilistically 200 members of P (high fitness high chance)
 - Apply the **crossover** operator to the 200 members
 - Choose one example of the 200 new members and apply mutation
 - Update P (300 most fit elements + 200 new)
 - Calculate the **fitness** of the new members

Conclusions

TU/e

- Genetic algorithms can be viewed as general optimization method for searching a large solution space.
- Although not guaranteed to find an optimal solution, GAs has been successfully applied to a number of optimization problems.

technische universiteit eindhoven

TU/e

Classes 1 2 3_5 6_9 10_ (5) s diagnose D1 D2 D3 D4 D5 (5) s geslacht M V (2) s leeftijd continuous 0 100 (10) i verzekerin Z P (2) s Class = 1#4 P = 0.01Class = 2#6 P = 0.01Class = 3#389 P = 0.52Class = 4#301 P = 0.40Class = 5#50 P = 0.07Default class = 3# examples: 750 Stem of the training and test data: C:\Data\delphi\geseco\Opnamepl

```
UseDefault = TRUE
Seed = 1
BitString1Chance: 0.50
Number of rules in the population: 500
Maximum number of generations: 500
Next generation if max fitness is # times
equal: 25
Covering Weight: 0.00
RuleReliabilityThres <: 40.00
```



```
New random population 1
Generation 43
R1: 00010011101111111100010 OK=143
Match=143
Total performance: (143/#143) 19.07%
Default class=3 (P=0.64)
```

```
New random population 2
Generation 40
R2: 01000100111011111100010 OK=43 Match=43
Total performance: (186/#186) 24.80%
Default class=3 (P=0.69)
```



```
(R1 143/143)
IF
diagnose=D4
geslacht=V
THEN class=6_9
                              (R2 \ 43/43)
IF
diagnose=D2
geslacht=M
leeftijd in[10..40][50..100]
THEN class=6 9
```


Performance: (650/#729) #examples=750 Score=86.67%

Confusion matrix:

ta	rget	classi	ficat	ion		>
classified	as	1	2	3	4	5
	1	0	0	0	0	0
	2	0	0	0	0	0
	3	4	3	361	24	7
	4	0	0	18	251	4
	5	0	0	0	19	38

Test Performance: (202/#241) #examples=250 Score=80.80%

Confusion matrix:

targ	get cl	assifi	cati	on	>	
classified as	5	1	2	3	4	5
:	1	0	0	0	0	0
:	2	0	0	0	0	0
	3	4	0	127	13	4
	4	0	0	7	62	5
	5	0	0	0	6	13