

Process Mining: Control-Flow Mining Algorithms

Ana Karla Alves de Medeiros

Eindhoven University of Technology Department of Information Systems a.k.medeiros@tue.nl

/faculteit technologie management

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

Process Mining

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

Process Mining

Event Logs

		_			
J			1. Register at hosp	ital	
1.	R	eg	 Talk Register U hospital 	' at	
2. 3.	T	1.	Register at	octor	
о. Л	• -		hospital	surge	ry
4. -	Ι	2.	Talk to doctor	dicines	5
5.	G	3.	Undergo surgery	od	
6.	I	4.	Take medicines		
7.	G	5.	Take blood	octor	
			sample	2	
		6.	Talk to doctor	tor	
		7.	Go home		

TU/e **Process Model Organizational Model Process Mining** Social Network Auditing/Security **Performance Analysis Event** Log Mined **Models** Mining **Techniques**

Event Logs are Everywhere!

Machines, Municipalities, Airports, Internet, Hospitals, etc.

Tools

- www.processmining.org
- ProM 4.2
- ProMimport
- Free tools!

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

Process Mining

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

Types of Algorithms

Types of Algorithms

TU/e

Process Model

Types of Algorithms

TU/e

Compliance

Types of Algorithms

TU/e

Bottlenecks/ Business Rules

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

Common Constructs

- Sequence
- Splits

- Joins
- Loops
- Non-Free Choice
- Invisible Tasks
- Duplicate Tasks

Common Constructs

- Sequence
- Splits

TU/e

- Joins
- Loops
- Non-Free Choice
- Invisible Tasks
- Duplicate Tasks

+ noise in logs!

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

Event Log: Mining XML (MXML)

The notion of which tasks belong to a same instance is crucial for applying process mining techniques!

Event Log: Mining XML (MXML)

Event Log: Mining XML (MXML)

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

α -algorithm

- 1. Read a log
- 2. Get the set of tasks
- 3. Infer the ordering relations **Core Step!**
- 4. Build the net based on inferred relations
- 5. Output the net

α -algorithm - Ordering Relations >, \rightarrow ,||,#

- Direct succession:
 x>y iff for some
 case x is directly
 followed by y.
- Causality: x→y iff x>y and not y>x.
- Parallel: x||y iff x>y and y>x
- Unrelated: x#y iff not x>y and not y>x.

α -algorithm - Formalization

Let W be a workflow log over T.
$$\alpha$$
(W) is defined as follows.
1. $T_W = \{t \in T \mid \exists_{\sigma \in W} t \in \sigma\},\$
2. $T_I = \{t \in T \mid \exists_{\sigma \in W} t = first(\sigma)\},\$
3. $T_O = \{t \in T \mid \exists_{\sigma \in W} t = last(\sigma)\},\$
4. $X_W = \{(A,B) \mid A \subseteq T_W \land B \subseteq T_W \land \forall_{a \in A} \forall_{b \in B} a \rightarrow_W b \land \forall_{a1,a2 \in A} a_1 \#_W a_2 \land \forall_{b1,b2 \in B} b_1 \#_W b_2\},\$
5. $Y_W = \{(A,B) \in X \mid \forall_{(A',B') \in X} A \subseteq A' \land B \subseteq B' \Rightarrow (A,B) = (A',B')\},\$
6. $P_W = \{p_{(A,B)} \mid (A,B) \in Y_W \} \cup \{i_W, o_W\},\$
7. $F_W = \{(a, p_{(A,B)}) \mid (A,B) \in Y_W \land a \in A\} \cup \{(p_{(A,B)}, b) \mid (A,B) \in Y_W \land b \in B\} \cup \{(i_W, t) \mid t \in T_I\} \cup \{(t, o_W) \mid t \in T_O\}, and\$
8. α (W) = (P_W, T_W, F_W).

α-algorithm – Log properties + target nets

- If log is complete with respect to relation >, it can be used to mine SWF-net without short loops
- Structured Workflow Nets (SWF-nets) have no implicit places and the following two constructs cannot be used:

A>B and B>A implies A||B and B||A instead of $A\rightarrow B$ and $B\rightarrow A$

α-algorithm – Common Constructs

- No invisible tasks, non-free-choice or duplicate tasks
- No noisy logs

/faculteit technologie management

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Algorithm
- Fuzzy Miner

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Algorithm
- Fuzzy Miner

- 1. Read a log
- 2. Get the set of tasks
- Infer the ordering relations based on their frequencies
- 4. Build the net based on inferred relations
- 5. Output the net

Heuristics Miner

Let W be an event log over T, and $a,b\in T$:

• $|a >_W b|$ is the number of times $a >_W b$ occurs in W,

•
$$a \Rightarrow_W b = \left(\frac{|a >_W b| - |b >_W a|}{|a >_W b| + |b >_W a| + 1} \right)$$

Insight:

The more frequently a task A directly follows another task B, and the less frequently the opposite occurs, the higher the probability that A causally follows B!

α-algorithm – Common Constructs

- No non-free-choice or duplicate tasks
- Robust to invisible tasks and noisy logs

/faculteit technologie management

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

Genetic Process Mining (GPM)

- Genetic Algorithms + Process Mining
- Genetic Algorithms
 - Search technique that mimics the process of evolution in biological systems
- Advantages
 - Tackle all common structural constructs
 - Robust to noise
- Disadvantages
 - Computational Time

Genetic Process Mining (GPM)

Algorithm:

Internal Representation

Fitness Measure

Genetic Operators

Stop	Description	
Step	Description	
1	Read event log	
	Build the initial population 🗕	
	Calculate fitness of the	
	individuals in the population	
IV	Stop and return the fittest	
	individuals? 🗕	
V	Create next population – use	
	elitism and genetic operators 🗕 🗨	

GPM – Fitness Measure

 Guides the search!

GPM – Fitness Measure

technische universiteit eindhoven

GPM – DGA ProM Plug-in

Why does the GA Miner takes so much time?

How could we improve its running time without changing the code?

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

- Short Recap
- Types of Process Mining Algorithms
- Common Constructs
- Input Format
- α-algorithm
- Heuristics Miner
- Genetic Miner
- Fuzzy Miner

Fuzzy Miner - Motivation

TU/e

Mine less structured processes!

/faculteit technologie management

Fuzzy Miner - Motivation

TU/e

/faculteit technologie management

Fuzzy Miner

TU/e

More to learn from maps...

Conclusions

- The notion of a process instance is crucial!
- Ordering of tasks is the basic information
- Frequencies are important to handle noise
- Local approaches
 - α-algorithm, Heuristics Miner
- Global approaches
 - Genetic Miner and Fuzzy Miner