

Process Mining: Extension Mining Algorithms

Ana Karla Alves de Medeiros

Eindhoven University of Technology Department of Information Systems a.k.medeiros@tue.nl

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Types of Algorithms

Types of Algorithms

TU/e

Process Model

Types of Algorithms

Compliance Process Model

Main Points Lecture 4

- Organizational mining plug-ins can discover
 - Roles/Teams in organizations
 - Social networks for originators
- Some metrics of social networks are based on ordering relations (e.g., the ordering relations used by the Alpha algorithm)
- Conformance Checker assesses how much a process model matches process instances
- LTL Checker uses logics to verify properties in event logs

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Types of Algorithms

TU/e

Bottlenecks/ Business Rules

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Decision Point Analysis: Main Idea

• Detection of data dependencies that affect the rounting the routing of process instances

Decision Point Analysis: Motivation

- Make tacit knowledge explicit
- Better understand the process model

/faculteit technologie management

technische universiteit eindhoven

1. Read a log + model

- 2. Identify the decision points in a model
- Find out which alternative branch has been taken for a given process instance and decision point
- 4. Discover the rules for each decision point
- 5. Return the enhanced model with the discovered rules

1. Read a log + model

Identify the decision points in a model
 ind out which alternative branch has been taken or a given process instance and
 How can we spot the decision points in a Petri net?

discovered rules

TU/e

1. Read a log + model

- 2. Identify the decision points in a model
- Find out which alternative branch has been taken for a given process instance and decision point
- 4. Discover the rules for each decision point
- 5. Return the enhanced model with the discovered rules

TU/e

Quick Recap Lecture 1: Decision Trees

Illustration (10 learning examples):									
	Hair	Length	Weight	Suntan c	<mark>ream</mark> Burned				
1	blond	medium	light	yes	no				
2	blond	medium	light	no	yes				
Attributes			light heavy	Classes:	Yes/No				
5	blond	long	medium	yes	no				
6	brown	long	light	no	no				
7	red	small	heavy	no	yes				
8	brown	long	light	yes	no				
9	blond	medium	heavy	no	yes				
10	brown	small	heavy	no	no				
New (test) examples:									
1	red	medium	light	yes	yes				
2	blond	medium	medium	no	yes				
3	brown	small	light	yes	no				

1. Read a log + model

- 2. Identi
 3. Find
 the attributes?
 taken for point
- 4. Discover the rules for each decision point
- 5. Return the enhanced model with the discovered rules

TU/e te Step 4

Training examples for decision point "p0"

amount	clientID	policyType	class
1000	C567894938	premium	С
700	C938609223	normal	B
550	C135697567	normal	В
500	C568120443	normal	С
50	C493823084	normal	С
200	C945675110	premium	С

Discovered decision tree for point "p0"

Decision Point Analysis: Example in ProM

Decision Point Analysis: Example in ProM

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Performance Analysis with Petri Nets

- Motivation
 - Provide different Key Performance Indicators (KPIs) relating to the execution of processes
- Main idea
 - Replay the log in a model and detect
 - Bottlenecks
 - Throughput times
 - Execution times
 - Waiting times
 - Synchronization times
 - Path probabilities etc

TU/e

Bottlenecks – Waiting Times and Execution Times

Bottlenecks – Throughput Times

🚜 ProM [4.2]	
File Mining Analysis Conversion Exports Window Help	
	ProM
Tanalysis - Performance Analysis with Petri net	r 0 🛛
Log Traces	Process information:
100 1000 101	- Total number selected:
102 103 Test Repair (Simple) Test Repair Test Repair Test Repair	Number fitting:
104 105 106 Repair (Simple) start complete 0.51 Repair (Simple) start complete	Arrival rate:
107 108 108 Restart Repair complete 0.49 Repair (Complex) start Person Repair (Complex) start	0.03 cases per minute
109 11 110 Archive Repair complete	avg 66.59 min 29.0
111 112 Analyze Defect Analyze Defect complete complete	max 159.0 stdev 19.45
113 114	- slow 2 93.87 - norma 63.39
Update	Change Export Percentages Time-Metrics
Invert Selection Zoor	m: 84 %
Performance information of the selected transitions: Frequency: 1000 cases Waiting time:	Selected:
Time in between (minutes) High avg 66.59 wirz 29.9	Transition - Register complete and:
max 159.0 stdev 19.45	Transition - Archive Repair co 💌
fast 25.00% 45.7 ▼	

Bottlenecks – Synchronization Times

12:48:53 [D] Buffered log reader created from reader buffered log reader, pitk.: [I@17fe3f

Bottlenecks – Synchror

File Mining Analysis Conversion Exports Window Help

TU/e

ProM [4.2]

What are these average synchronization times telling us?

TU/e

Bottlenecks – Path Probabilities

Performance Analysis with Petri Nets

TU/e

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Summary

- Extension techniques enhance existing models with information discovered from event logs
- The *Decision Point Analysis* plug-in can discover the "business rules" for the moments of choice in a process model
- The *Performance Analysis with Petri Nets* plugin provides various KPIs w.r.t. the execution of processes
- The results of both techniques can be used to create simulation models for CPN Tools

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Short Recap

- Extension Techniques
 - Decision Miner
 - Performance Analysis with Petri Nets
- Summary
- Announcements
- Presentation Futura Technology

Announcements

- Assignment 5
 - Individual assignment
 - Q&A session during Instruction 5
 - Posting of Report with Answers
 - Digital version at StudyWeb (folder Assignment 5)
 - Printed version to be delivered at secretary's office of IS group (room Pav D3)
 - There will be a box on the desk
 - Deadline: March 14th, 2008 at 6pm
- Invited talk after the break!